The endocannabinoid 2-arachidonoylglycerol is responsible for the slow self-inhibition in neocortical interneurons.
نویسندگان
چکیده
In the CNS, endocannabinoids are identified mainly as two endogenous lipids: anandamide, the ethanolamide of arachidonic acid, and 2-arachidonoylglycerol (2-AG). Endocannabinoids are known to inhibit transmitter release from presynaptic terminals; however we have recently demonstrated that they are also involved in slow self-inhibition (SSI) of layer V low-threshold spiking (LTS) interneurons in rat somatosensory cortex. SSI is induced by repetitive firing in LTS cells, which can express either cholecystokinin or somatostatin. SSI is triggered by an endocannabinoid-dependent activation of a prolonged somatodendritic K(+) conductance and associated hyperpolarization in the same cell. The synthesis of both endocannabinoids is dependent on elevated [Ca(2+)](i) such as occurs during sustained neuronal activity. To establish whether 2-AG mediates autocrine LTS-SSI, we blocked its biosynthesis from phospholipase C (PLC) and diacylglycerol lipases (DAGLs). Current-clamp recordings from LTS interneurons in acute neocortical slices showed that inclusion of DAGL inhibitors in the whole-cell pipette prevented the long-lasting hyperpolarization triggered by LTS cell repetitive firing. Similarly, extracellular applications of a PLC inhibitor prevented SSI in LTS interneurons. Moreover, metabotropic glutamate receptor-dependent activation of PLC produced a long-lasting hyperpolarization which was prevented by the CB1 antagonist AM251, as well as by PLC and DAGL inhibitors. The loss of SSI in the presence of intracellular DAGL blockers confirms that endocannabinoid production occurs in the same interneuron undergoing the persistent hyperpolarization. Since DAGLs produce no endocannabinoid other than 2-AG, these results identify this compound as the autocrine mediator responsible for the postsynaptic slow self-inhibition of neocortical LTS interneurons.
منابع مشابه
Diacylglycerol lipase is not involved in depolarization-induced suppression of inhibition at unitary inhibitory connections in mouse hippocampus.
Endocannabinoids control hippocampal inhibitory synaptic transmission through activation of presynaptic CB(1) receptors. During depolarization-induced suppression of inhibition (DSI), endocannabinoids are synthesized upon postsynaptic depolarization. The endocannabinoid 2-arachidonoylglycerol (2-AG) may mediate hippocampal DSI. Currently, the best studied pathway for biosynthesis of 2-AG involv...
متن کاملβ-Neurexins Control Neural Circuits by Regulating Synaptic Endocannabinoid Signaling
α- and β-neurexins are presynaptic cell-adhesion molecules implicated in autism and schizophrenia. We find that, although β-neurexins are expressed at much lower levels than α-neurexins, conditional knockout of β-neurexins with continued expression of α-neurexins dramatically decreased neurotransmitter release at excitatory synapses in cultured cortical neurons. The β-neurexin knockout phenotyp...
متن کاملFunctional CB1 receptors are broadly expressed in neocortical GABAergic and glutamatergic neurons.
The cannabinoid receptor CB1 is found in abundance in brain neurons, whereas CB2 is essentially expressed outside the brain. In the neocortex, CB1 is observed predominantly on large cholecystokinin (CCK)-expressing interneurons. However, physiological evidence suggests that functional CB1 are present on other neocortical neuronal types. We investigated the expression of CB1 and CB2 in identifie...
متن کاملInactivation and biotransformation of the endogenous cannabinoids anandamide and 2-arachidonoylglycerol.
The cannabinoid field is currently an active research area. Anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are the most characterized endogenous cannabinoids (also known as endocannabinoids). These neuromodulators have been implicated in various physiologically relevant phenomena, including mood (Witkin et al., 2005), the immune response (Ashton, 2007), appetite (Kirkham and Tucci, 2006), r...
متن کاملThe Effects of the Endocannabinoids Anandamide and 2-Arachidonoylglycerol on Human Osteoblast Proliferation and Differentiation
The endocannabinoid system is expressed in bone, although its role in the regulation of bone growth is controversial. Many studies have examined the effect of endocannabinoids directly on osteoclast function, but few have examined their role in human osteoblast function, which was the aim of the present study. Human osteoblasts were treated from seeding with increasing concentrations of anandam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 50 شماره
صفحات -
تاریخ انتشار 2008